Limitations of yeast surface display in engineering proteins of high thermostability.
نویسندگان
چکیده
Engineering proteins that can fold to unique structures remains a challenge. Protein stability has previously been engineered via the observed correlation between thermal stability and eukaryotic secretion level. To explore the limits of an expression-based approach, variants of the highly thermostable three-helix bundle protein alpha3D were studied using yeast surface display. A library of alpha3D mutants was created to explore the possible correlation of protein stability and fold with expression level. Five efficiently expressed mutants were then purified and further studied biochemically. Despite their differences in stability, most mutants expressed at levels comparable with that of wild-type alpha3D. Two other related sequences (alpha3A and alpha3B) that form collapsed, stable molten globules but lack a uniquely folded structure were similarly expressed at high levels by yeast display. Together these observations suggest that the quality control system in yeast is unable to discriminate between well-folded proteins of high stability and molten globules. The present study, therefore, suggests that an optimization of the surface display efficiency on yeast may yield proteins that are thermally and chemically stable yet are poorly folded.
منابع مشابه
Microbial Cell Surface Display: Its Medical and Environmental Applications
Cell-surface display is the expression of peptides and proteins on the surface of living cells by fusing them tofunctional components of cells which are exposed to the environment of cells. This strategy can be carriedout using different surface proteins of cells as anchoring motifs and different proteins from different sourcesas a passenger protein. It is a promising strategy...
متن کاملEngineering antibody affinity by yeast surface display.
Yeast surface display (YSD) is a powerful tool for engineering the affinity, specificity, and stability of antibodies, as well as other proteins. Since first described in 1997 by Boder and Wittrup, YSD has been employed successfully in engineering a number of antibodies, as well as T-cell receptors. A recently reported large nonimmune single chain antibody library serves as a good starting poin...
متن کاملDevelopment of a novel strategy for engineering high-affinity proteins by yeast display.
Yeast display provides a system for engineering high-affinity proteins using a fluorescent-labeled ligand and fluorescence-activated cell sorting (FACS). In cases where it is difficult to obtain purified ligands, or to access FACS instrumentation, an alternative selection strategy would be useful. Here we show that yeast expressing high-affinity proteins against a mammalian cell surface ligand ...
متن کاملChaperone-assisted thermostability engineering of a soluble T cell receptor using phage display
We here report a novel phage display selection strategy enabling fast and easy selection of thermostabilized proteins. The approach is illustrated with stabilization of an aggregation-prone soluble single chain T cell receptor (scTCR) characteristic of the murine MOPC315 myeloma model. Random mutation scTCR phage libraries were prepared in E. coli over-expressing the periplasmic chaperone FkpA,...
متن کاملCell surface display of functional human MHC class II proteins: yeast display versus insect cell display.
Reliable and robust systems for engineering functional major histocompatibility complex class II (MHCII) proteins have proved elusive. Availability of such systems would enable the engineering of peptide-MHCII (pMHCII) complexes for therapeutic and diagnostic applications. In this paper, we have developed a system based on insect cell surface display that allows functional expression of heterod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein engineering, design & selection : PEDS
دوره 19 5 شماره
صفحات -
تاریخ انتشار 2006